The Discrete Adjoint Approach to Aerodynamic Shape Optimization
نویسندگان
چکیده
A viscous discrete adjoint approach to automatic aerodynamic shape optimization is developed, and the merits of the viscous discrete and continuous adjoint approaches are discussed. The viscous discrete and continuous adjoint gradients for inverse design and drag minimization cost functions are compared with finite-difference and complex-step gradients. The optimization of airfoils in two-dimensional flow for inverse design and drag minimization is illustrated. Both the discrete and continuous adjoint methods are used to formulate two new design problems. First, the timedependent optimal design problem is established, and both the time accurate discrete and continuous adjoint equations are derived. An application to the reduction of the time-averaged drag coefficient while maintaining time-averaged lift and thickness distribution of a pitching airfoil in transonic flow is demonstrated. Second, the remote inverse design problem is formulated. The optimization of a three-dimensional biconvex wing in supersonic flow verifies the feasibility to reduce the near field pressure peak. Coupled drag minimization and remote inverse design cases produce wings with a lower drag and a reduced near field peak pressure signature.
منابع مشابه
Studies of the Continuous and Discrete Adjoint Approaches to Viscous Automatic Aerodynamic Shape Optimization
This paper compares the continuous and discrete viscous adjoint-based automatic aerodynamic optimization. The objective is to study the complexity of the discretization of the adjoint equation for both the continuous and discrete approach, the accuracy of the resulting estimate of the gradient, and its impact on the computational cost to approach an optimum solution. First, this paper presents ...
متن کاملC:/Documents and Settings/ssharma/Desktop/ECMI07/ECMI07/gauger.dvi
Because detailed aerodynamic shape optimizations still suffer from high computational costs, efficient optimization strategies are required. Regarding the deterministic optimization methods, the adjoint approach is seen as a promising alternative to the classical finite difference approach [1, 2]. With the adjoint approach the sensitivities needed for the aerodynamic shape optimization can be e...
متن کاملA Comparison of the Continuous and Discrete Adjoint Approach to Automatic Aerodynamic Optimization
This paper compares the continuous and discrete adjoint-based automatic aerodynamic optimization. The objective is to study the trade-off between the complexity of the discretization of the adjoint equation for both the continuous and discrete approach, the accuracy of the resulting estimate of the gradient, and its impact on the computational cost to approach an optimum solution. First, this p...
متن کاملUnsteady Adjoint Approach for Design Optimization of Flapping Airfoils
This paper describes the work for optimizing the propulsive efficiency of flapping airfoils, i.e., improving the thrust under constraining aerodynamic work during the flapping flights by changing their shape and trajectory of motion with the unsteady discrete adjoint approach. For unsteady problems, it is essential to properly resolving time scales of motion under consideration and it must be c...
متن کاملDiscrete Adjoint Approach for Aerodynamic Sensitivity Analysis and Shape Optimization on Overset Mesh System
In the present talk, the strategies to apply the sensitivity analysis method to aerodynamic shape optimization problems of complex geometries are intensively discussed. To resolve the design of complicated aircraft geometries such as high-lift devices, wing/body configurations, overset mesh techniques are adopted. In addition, a noticeable sensitivity analysis method, adjoint approach, which sh...
متن کامل